Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Food Funct ; 15(6): 3141-3157, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38439638

RESUMEN

Four major types of resistant starch (RS1-4) are present in foods, all of which can alter the microbiome and are fermented in the cecum and colon to produce short-chain fatty acids (SCFAs). Type 4 RSs are chemically modified starches, not normally found in foods, but have become a popular food additive as their addition increases fiber content. Multiple studies, in humans and rodents, have explored how different RS4 affect post-prandial glucose metabolism, but fewer studies have examined the effects of RS4 consumption on the microbiome. In addition, many RS studies conducted in rodents use high-fat diets that do not approximate what is typically consumed by humans. To address this, mice were fed a Total Western Diet (TWD), based on National Health and Nutrition Examination Survey (NHANES) data that mimics the macro and micronutrient composition of a typical American diet, for six weeks, and then supplemented with 0, 2, 5, or 10% of the RS4, Versafibe 1490™ (VF), a phosphorylated and cross-linked potato starch, for an additional three weeks. The cecal contents were analyzed for SCFA content and microbiota composition. Butyrate production was increased while branched chain SCFA production decreased. The alpha-diversity of the microbiome decreased in mice fed the TWD with 10% VF 1490 added while the beta-diversity plot showed that the 5% and 10% VF groups were distinct from mice fed the TWD. Similarly, the largest changes in relative abundance of various genera were greatest in mice fed the 10% VF diet. To examine the effect of VF consumption on tissue gene expression, cecal and distal colon tissue mRNA abundance were analyzed by RNASeq. Gene expression changes were more prevalent in the cecum than the colon and in mice fed the 10% VF diet, but the number of changes was substantially lower than we previously observed in mice fed the TWD supplemented with native potato starch (RPS). These results provide additional evidence that the structure of the RS is a major factor determining its effects on the microbiome and gene expression in the cecum and colon.


Asunto(s)
Ciego , Almidón Resistente , Solanum tuberosum , Animales , Ratones , Ciego/metabolismo , Ciego/microbiología , Dieta Occidental , Expresión Génica , Microbiota , Encuestas Nutricionales , Almidón Resistente/metabolismo , Solanum tuberosum/química
2.
Int J Biol Macromol ; 265(Pt 2): 131031, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518930

RESUMEN

In this study, the effects of citric acid-autoclaving (CA-A) treatment on physicochemical and digestive properties of the native ginseng starches were investigated. The results showed that ginseng starch exhibited a B-type crystal structure with a low onset pasting temperature of 44.23 ± 0.80 °C, but high peak viscosity and setback viscosity of 5897.34 ± 53.72 cP and 692.00 ± 32.36 cP, respectively. The granular morphology, crystal and short-range ordered structure of ginseng starches were destroyed after CA-A treatment. The more short-chain starches were produced, resulting in the ginseng starches solubility increased. In addition, autoclaving, citric acid (CA) and CA-A treatment promoted polymerization and recrystallization of starch molecules, increased the proportion of amylopectin B1, and B3 chains, and improved molecular weight and resistant starch (RS) content of ginseng starches. The most significant multi-scale structural change was induced by CA-A treatment, which reduced the relative crystallinity of ginseng starch from 28.26 ± 0.24 % to 2.75 ± 0.08 %, and increased the content of RS to 54.30 ± 0.14 %. These findings provided a better understanding of the structure and properties of Chinese ginseng starches and offered new ideas for the deep processing of ginseng foods.


Asunto(s)
Ácido Cítrico , Panax , Ácido Cítrico/química , Almidón/química , Amilopectina/química , Viscosidad , Almidón Resistente , Amilosa/química
3.
Gut Microbes ; 16(1): 2315632, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375831

RESUMEN

Bile acids (BA) are among the most abundant metabolites produced by the gut microbiome. Primary BAs produced in the liver are converted by gut bacterial 7-α-dehydroxylation into secondary BAs, which can differentially regulate host health via signaling based on their varying affinity for BA receptors. Despite the importance of secondary BAs in host health, the regulation of 7-α-dehydroxylation and the role of diet in modulating this process is incompletely defined. Understanding this process could lead to dietary guidelines that beneficially shift BA metabolism. Dietary fiber regulates gut microbial composition and metabolite production. We tested the hypothesis that feeding mice a diet rich in a fermentable dietary fiber, resistant starch (RS), would alter gut bacterial BA metabolism. Male and female wild-type mice were fed a diet supplemented with RS or an isocaloric control diet (IC). Metabolic parameters were similar between groups. RS supplementation increased gut luminal deoxycholic acid (DCA) abundance. However, gut luminal cholic acid (CA) abundance, the substrate for 7-α-dehydroxylation in DCA production, was unaltered by RS. Further, RS supplementation did not change the mRNA expression of hepatic BA producing enzymes or ileal BA transporters. Metagenomic assessment of gut bacterial composition revealed no change in the relative abundance of bacteria known to perform 7-α-dehydroxylation. P. ginsenosidimutans and P. multiformis were positively correlated with gut luminal DCA abundance and increased in response to RS supplementation. These data demonstrate that RS supplementation enriches gut luminal DCA abundance without increasing the relative abundance of bacteria known to perform 7-α-dehydroxylation.


Asunto(s)
Microbioma Gastrointestinal , Almidón Resistente , Ratones , Masculino , Femenino , Animales , Microbioma Gastrointestinal/fisiología , Ácidos y Sales Biliares , Suplementos Dietéticos , Bacterias/genética , Ácido Desoxicólico
4.
Molecules ; 29(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257283

RESUMEN

Obesity has become a major disease that endangers human health. Studies have shown that dietary interventions can reduce the prevalence of obesity and diabetes. Resistant starch (RS) exerts anti-obesity effects, alleviates metabolic syndrome, and maintains intestinal health. However, different RS types have different physical and chemical properties. Current research on RS has focused mainly on RS types 2, 3, and 4, with few studies on RS1. Therefore, this study aimed to investigate the effect of RS1 on obesity and gut microbiota structure in mice. In this study, we investigated the effect of potato RS type 1 (PRS1) on obesity and inflammation. Mouse weights, as well as their food intake, blood glucose, and lipid indexes, were assessed, and inflammatory factors were measured in the blood and tissues of the mice. We also analyzed the expression levels of related genes using PCR, with 16S rRNA sequencing used to study intestinal microbiota changes in the mice. Finally, the level of short-chain fatty acids was determined. The results indicated that PRS1 promoted host obesity and weight gain and increased blood glucose and inflammatory cytokine levels by altering the gut microbiota structure.


Asunto(s)
Microbioma Gastrointestinal , Solanum tuberosum , Humanos , Animales , Ratones , Almidón Resistente , Dieta Alta en Grasa/efectos adversos , Glucemia , ARN Ribosómico 16S , Almidón/farmacología , Obesidad/etiología
5.
Int J Biol Macromol ; 258(Pt 1): 128938, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38143061

RESUMEN

In this study, type III resistant starch (RS3) was prepared from high amylose maize starch (HAMS) using hydrothermal (RS-H), hydrothermal combined ultrasonication (RS-HU), hydrothermal-alkali (RS-HA), and hydrothermal-alkali combined ultrasonication (RS-HAU). The role of the preparation methods and the mechanism of RS3 formation were analyzed by studying the multiscale structure and digestibility of the starch. The SEM, NMR, and GPC results showed that hydrothermal-alkali combined with ultrasonication could destroy the granule structure and α-1,6 glycosidic bond of HAMS and reduce the molecular weight of HAMS from 195.306 kDa to 157.115 kDa. The other methods had a weaker degree of effect on the structure of HAMS, especially hydrothermal and hydrothermal combined ultrasonication. The multiscale structural results showed that the relative crystallinity, short-range orderliness, and thermal stability of RS-HAU were significantly higher compared with native HAMS. In terms of digestion, RS-HAU had the highest RS content of 69.40 %. In summary, HAMS can generate many short-chain amylose due to structural damage, which rearrange to form digestion-resistant crystals. With correlation analysis, we revealed the relationship between the multiscale structure and the RS content, which can be used to guide the preparation of RS3.


Asunto(s)
Amilosa , Almidón Resistente , Amilosa/química , Zea mays/química , Ultrasonido , Digestión , Almidón/química
6.
Int J Biol Macromol ; 253(Pt 6): 127077, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37769764

RESUMEN

Zucchini polysaccharide (ZP) has a unique molecular structure and a variety of biological activities. This study aimed to evaluate the effects of ZP (1, 2, 3, 4 and 5 %, w/w) on the properties of potato starch (PS), including pasting, rheological, thermodynamic, freeze-thaw stability, micro-structure, and in vitro digestibility of the ZP-PS binary system. The results showed that the appearance of ZP significantly reduced the peak, breakdown, final and setback viscosity and prolonged the pasting temperature of PS, whereas increased the trough viscosity. The tests of rheological showed that ZP had a damaging effect on PS gels. Meanwhile, the results of thermodynamic and Fourier transform infrared exhibited that the presence of ZP significantly retarded the retrogradation of PS, especially at a higher levels. The observation of the microstructure exhibited that ZP significantly altered the microscopic network structure of the PS gels, and ZP reduced the formation of the gel structure. Besides, ZP postponed the retrogradation process of PS gels. Moreover, ZP weakened the freeze-thaw stability of the PS gel. Furthermore, ZP also can decrease the digestibility and estimated glycemic index (eGI) value of PS from 86.04 % and 70.89 to 77.67 % and 65.22, respectively. Simultaneously, the addition of ZP reduced the rapidly digestible starch content (from 25.09 % to 16.59 %) and increased the slowly digestible starch (from 24.99 % to 26.77 %) and resistant starch content (from 49.92 % to 56.64 %). These results have certain guiding significance for the application of ZP in starch functional food.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/química , Almidón/química , Almidón Resistente , Viscosidad , Reología , Geles/química
7.
Int J Biol Macromol ; 252: 126426, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37604422

RESUMEN

The effects of different types and content of polyphenol addition on the structure, cooking, antioxidant characteristics and in vitro starch digestibility of extruded buckwheat noodles were investigated in this study. The result showed epigallocatechin-3-gallate (EGCG) was more easily combined with starch to form complex than caffeic acid, and amylose tended to be combined with polyphenols to form more complex. Amylose had a protective effect on polyphenols during extrusion process, which led to a significant increase of polyphenol content and antioxidant activity of extruded noodles. The addition of polyphenol and high amylose corn starch (HACS) improved the cooking quality of extruded buckwheat noodles. The extruded buckwheat noodles with 20 % HACS and 1 % EGCG had the lowest cooking loss of 6.08 %. The addition of EGCG and HACS increased the content of resistant starch and reduced predicted glycemic index (pGI). The noodles with 20 % HACS and 3 % EGCG had the lowest pGI (63.38) and the highest resistant starch (RS) content (61.60 %). This study provides a theoretical basis for the development of low pGI extruded buckwheat noodles.


Asunto(s)
Fagopyrum , Almidón , Almidón/química , Antioxidantes/farmacología , Amilosa/química , Almidón Resistente , Culinaria , Harina/análisis , Polifenoles
8.
Int J Biol Macromol ; 249: 126102, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37541464

RESUMEN

The impact of autoclaving or autoclave-debranching treatments on the multi-scale structure of resistant starch (RS) and the relationship with starch digestion remains unclear, despite their widespread use in its preparation. This work investigated the relationship between RS structure in black Tartary buckwheat and its digestibility by analyzing the effects of autoclaving and autoclave-debranching combined treatments on the multi-scale structure of RS. The results showed that black Tartary buckwheat RS exhibited a more extensive honeycomb-like network structure and enhanced thermal stability than either black Tartary buckwheat native starch (BTBNS) or common buckwheat native starch (CBNS). Autoclaving and autoclaving-debranching converted A-type native starch to V-type and possibly the formation of flavonoid-starch complexes. Autoclaving treatment significantly increased the proportion of short A chain (DP 6-12) and the amylose (AM) content, reduced the viscosity and the total crystallinity. Notably, the autoclave-debranching co-treatment significantly enhanced the resistance of starch to digestion, promoted the formation of perfect microcrystallines, and increased the AM content, short-range ordered degree, and the proportion of long B2 chain (DP 25-36). This study reveals the relationship between the multi-scale structure and digestibility of black Tartary buckwheat RS by autoclaving combined with debranching modification.


Asunto(s)
Fagopyrum , Almidón Resistente , Fagopyrum/química , Almidón/química , Amilosa/química , Viscosidad
9.
Nutr Res ; 118: 12-28, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37536013

RESUMEN

Little is known about how combining a probiotic with prebiotic dietary fiber affects the ability of either biotic to improve health. We hypothesized that prebiotic, high-amylose maize type 2-resistant starch (RS) together with probiotic Lactiplantibacillus plantarum NCIMB8826 (LP) as a complementary synbiotic results in additive effects on the gut microbiota in diet-induced obese mice and other body sites. Diet-induced obese C57BL/6J male mice were fed a high-fat diet adjusted to contain RS (20% by weight), LP (109 cells every 48 hours), or both (RS+LP) for 6 weeks. As found for mice fed RS, cecal bacterial alpha diversity was significantly reduced in mice given RS+LP compared with those fed LP and high-fat controls. Similarly, both RS+LP and RS also conferred lower quantities of cecal butyrate and serum histidine and higher ileal TLR2 transcript levels and adipose tissue interleukin-6 protein. As found for mice fed LP, RS+LP-fed mice had higher colonic tissue TH17 cytokines, reduced epididymal fat immune and oxidative stress responses, reduced serum carnitine levels, and increased transcript quantities of hepatic carnitine palmitoyl transferase 1α. Notably, compared with RS and LP consumed separately, there were also synergistic increases in colonic glucose and hepatic amino acids as well antagonistic effects of LP on RS-mediated increases in serum adiponectin and urinary toxin levels. Our findings show that it is not possible to fully predict outcomes of synbiotic applications based on findings of the probiotic or the prebiotic tested separately; therefore, studies should be conducted to test new synbiotic formulations.


Asunto(s)
Dieta Alta en Grasa , Almidón Resistente , Masculino , Ratones , Animales , Ratones Obesos , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Almidón/farmacología , Almidón/metabolismo , Carnitina
10.
J Sci Food Agric ; 103(15): 7712-7720, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37439262

RESUMEN

BACKGROUND: At present, increasing importance has been attracted to healthy food enriched in resistant starch (RS), which has great benefits in health-promoting. Raw potato has rich RS2, whereas most RS2 may become digestible after gelatinization, resulting in few RS being left in processed potato. Breeding potatoes with high RS2 or RS3 or both can meet the demand for various healthy potato products. RESULTS: There were apparent discrepancies among three potatoes with contrast RS2 and RS3 content in thermal properties, viscosity and digestibility. ZS-5 had the highest RS2 with 50.17% but the lowest RS3 with 3.31%. Meanwhile, ZS-5 had the largest starch granule, the highest proportion of B3, viscosity and hardness, and the highest digestibility. DN303 with the highest content of RS3 (5.08%) had the lowest hardness and fracturability. MG56-42 with both higher RS2 and RS3 content showed the highest resistance to digestion and moderate hardness and fracturability. CONCLUSION: The present study enriches the potential resources and provides a reliable scientific basis for high RS potatoes breeding. The various features of different potatoes make it possible to screen potatoes according to different demands. © 2023 Society of Chemical Industry.


Asunto(s)
Solanum tuberosum , Almidón , Almidón/química , Solanum tuberosum/genética , Fitomejoramiento , Almidón Resistente , Viscosidad
11.
Int J Biol Macromol ; 244: 125297, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37315668

RESUMEN

Supplementation of rice flour with Apple Pomace Powder (APP) and Synthetic Vinegar (SV) was investigated to reduce the glycemic potential of ready-to-eat snacks using extrusion cooking. The aim of the study was to compare the increase in resistant starch and decrease in glycemic index of modified rice flour based extrudates after supplementing the Modified rice flour with synthetic vinegar and apple pomace. The effects of independent variables-SV (3-6.5 %) and APP (2-23 %) were evaluated on resistant starch, predicted glycemic index, glycemic load, L*, a*, b*, ΔE and overall acceptability of supplemented extrudates. Design expert predicted 6 % SV and 10 % APP as desirable conditions for enhancement of resistant starch and reduction of glycemic index. Resistant Starch (RS) of supplemented extrudates increased by 88 % while as pGI and GL was decreased by 12 % and 66 % respectively as compared to un-supplemented extrudates. L* value increased from 39.11 to 46.78, a* value increased from 11.85 to 22.55, b* value increased from 10.10 to 26.22 and Δ E increased from 7.24 to 17.93 respectively in supplemented extrudates. The results suggested that apple pomace and vinegar can act in synergy to reduce the in-vitro digestibility of rice based snacks, while maintaining the sensory acceptance of the developed product. The significant (p < 0.001) decrease in the glycemic index was achieved as the supplementation level increased. The increase in RS correlates with the decrease in glycemic index and glycemic load.


Asunto(s)
Oryza , Almidón , Almidón/química , Almidón Resistente , Harina , Ácido Acético , Suplementos Dietéticos , Oryza/química
12.
Nutrients ; 15(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37049425

RESUMEN

The effects of resistant starch at high doses have been well-characterized, but the potential prebiotic effects of resistant starch at doses comparable to oligosaccharide prebiotics have not been evaluated. A three-arm randomized, double-blind, placebo-controlled clinical trial was conducted to evaluate the effect of 3.5 g and 7 g daily doses of Solnul™ resistant potato starch (RPS) on beneficial populations of gut bacteria and stool consistency after a 4-week period. The relative abundance of Bifidobacterium and Akkermansia was determined by employing 16Sv4 sequencing of stool samples. To assess the effect of RPS on laxation and bowel movements, stools were recorded and scored using the Bristol Stool Form Scale. Participants consuming 3.5 g/day of RPS experienced significantly greater changes in Bifidobacterium and Akkermansia compared to the placebo after 4 weeks. The number of diarrhea- and constipation-associated bowel movements were both significantly lower in the 3.5 g RPS arm compared to the placebo group. Participants consuming 7 g of RPS responded similarly to those in the 3.5 g arm. Our analyses demonstrate that Solnul™ RPS has a prebiotic effect when consumed for 4 weeks at the 3.5 g per day dose, stimulating increases in beneficial health-associated bacteria and reducing diarrhea- and constipation-associated bowel movements when compared to the placebo group.


Asunto(s)
Prebióticos , Solanum tuberosum , Humanos , Almidón Resistente , Estreñimiento/tratamiento farmacológico , Heces/microbiología , Diarrea/microbiología , Almidón/farmacología , Bacterias , Método Doble Ciego
13.
Curr Opin Clin Nutr Metab Care ; 26(4): 334-340, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37057658

RESUMEN

PURPOSE OF REVIEW: Resistant starch has received much attention recently as a healthy carbohydrate component of the diet. Resistant starch is not digested in the small intestine and can thus affect the gut microbiota of the host because of its fermentability. This review summarizes the interactions along the resistant starch-gut microbiota-host axis to help understand the health effects of resistant starch. RECENT FINDINGS: Recent studies indicate that resistant starch can be a helpful dietary component for special disease states like diabetes, metabolic syndrome, chronic kidney disease, constipation, and colitis. Its health effects are associated with modulation of the gut microbiota, and with gut microbes converting resistant starch into active and bioavailable metabolites that promote intestinal health. SUMMARY: The results from human clinical trials and studies in animal models indicate that supplementation of the diet with resistant starch in different metabolic diseases help remodel gut microbiota, especially increasing short-chain fatty acid (SCFA)-producing bacteria, and produce bioactive metabolites like SCFA, bile acids, and amino acids responsible for a variety of health effects. The gut microbiota and microbial metabolites probably mediate the effects of resistant starch on intestinal health.


Asunto(s)
Almidón Resistente , Almidón , Animales , Humanos , Almidón Resistente/farmacología , Almidón/química , Almidón/metabolismo , Almidón/farmacología , Dieta , Bacterias , Ácidos Grasos Volátiles/metabolismo , Suplementos Dietéticos
14.
Pharmacol Res ; 190: 106714, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36863429

RESUMEN

Ischemic stroke is closely associated with gut microbiota dysbiosis and intestinal barrier dysfunction. Prebiotic intervention could modulate the intestinal microbiota, thus considered a practical strategy for neurological disorders. Puerariae Lobatae Radix-resistant starch (PLR-RS) is a potential novel prebiotic; however, its role in ischemic stroke remains unknown. This study aimed to clarify the effects and underlying mechanisms of PLR-RS in ischemic stroke. Middle cerebral artery occlusion surgery was performed to establish a model of ischemic stroke in rats. After gavage for 14 days, PLR-RS attenuated ischemic stroke-induced brain impairment and gut barrier dysfunction. Moreover, PLR-RS rescued gut microbiota dysbiosis and enriched Akkermansia and Bifidobacterium. We transplanted the fecal microbiota from PLR-RS-treated rats into rats with ischemic stroke and found that the brain and colon damage were also ameliorated. Notably, we found that PLR-RS promoted the gut microbiota to produce a higher level of melatonin. Intriguingly, exogenous gavage of melatonin attenuated ischemic stroke injury. In particular, melatonin attenuated brain impairment via a positive co-occurrence pattern in the intestinal microecology. Specific beneficial bacteria served as leaders or keystone species to promoted gut homeostasis, such as Enterobacter, Bacteroidales_S24-7_group, Prevotella_9, Ruminococcaceae and Lachnospiraceae. Thus, this new underlying mechanism could explain that the therapeutic efficacy of PLR-RS on ischemic stroke at least partly attributed to gut microbiota-derived melatonin. In summary, improving intestinal microecology by prebiotic intervention and melatonin supplementation in the gut were found to be effective therapies for ischemic stroke.


Asunto(s)
Depresores del Sistema Nervioso Central , Microbioma Gastrointestinal , Accidente Cerebrovascular Isquémico , Melatonina , Pueraria , Animales , Ratas , Disbiosis/microbiología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Melatonina/farmacología , Melatonina/uso terapéutico , Prebióticos , Almidón Resistente , Depresores del Sistema Nervioso Central/farmacología , Depresores del Sistema Nervioso Central/uso terapéutico
15.
Water Environ Res ; 95(2): e10836, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36744448

RESUMEN

It is essential to increase the use of carbohydrates as an energy source and improve protein synthesis and utilization to reduce ammonia nitrogen emissions. A 60-day cultural experiment was conducted to assess the impact of resistant starch (kelp meal, Laminaria japonica) replacing starch on water quality, nitrogen and phosphorus budget and microbial community of hybrid snakehead. Approximately 1350 experimental fish (11.4 ± 0.15 g) were randomly divided into control group (C, 20% starch) and four resistant starch groups: low replacement group (LR, 15% starch), medium replacement group (MR, 10% starch), high replacement group (HR, 5% starch) and full replacement group (FR, 0% starch). The crude protein and crude fat content of hybrid snakehead fish fed with the FR diet had the most significant improvement (P < 0.05). However, resistant starch also increased the effectiveness of nitrogen and phosphorus utilization in hybrid snakeheads, which decreased the proportion of total nitrogen and total phosphorus in tail water. The minimum nitrogen and phosphorus emission rate was when the starch level was 6.1%. Denitrifying microbes including Gemmobacter, Rhodobacter, Emticicia and Bosea have become much more prevalent in group FR (P < 0.05). In general, replacing starch with resistant starch can enhance the rate at which nitrogen and phosphorus are used in feeding, lessening water pollution and altering environmental microbial composition. PRACTITIONER POINTS: Resistant starch (RS) improves whole fish nutritional content. Resistant starch improves dietary nitrogen and phosphorus utilization. Resistant starch acts as a carbon source and encourages the colonization of denitrifying bacteria in water.


Asunto(s)
Laminaria , Microbiota , Animales , Alimentación Animal/análisis , Peces/metabolismo , Laminaria/metabolismo , Nitrógeno/metabolismo , Fósforo , Almidón Resistente , Almidón , Calidad del Agua
16.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638279

RESUMEN

An experiment was conducted to determine how feeding calcium (Ca)-deficient diet would affect gastrointestinal pH and volatile fatty acids (VFAs), Ca digestibility, bone mineral density (BMD), and performance in nursery pigs; and if supplementation of nondigestible oligosaccharides would affect these same parameters. In total, 240 weaned pigs (BW = 7.1 kg) were placed into 80 pens with 3 pigs/pen. The eight dietary treatments consisted of: 1) positive control (PC, 0.83% total Ca), 2) negative control (NC, 0.50% total Ca), 3 and 4) NC + 5% or 7.5% soluble corn fiber (SCF), 5 and 6) NC + 5% or 7.5% resistant corn starch (rCS), 7 and 8) NC + 0.25% or 0.50% fat-protected butyrate (pBRT). Pigs were ad libitum fed the dietary treatments for 21 d to determine average daily gain (ADG), average daily feed intake (ADFI) and gain:feed ratio (GF) with a fecal sample collected from each pen to determine Ca digestibility using acid insoluble ash as the dietary marker, with 1 pig/pen euthanized on d 21 for collection of ileal and colon contents and the left humerus. Pigs fed the NC diet had a lower colonic pH compared with pigs fed the PC (P = 0.06) but no effect on total VFA was observed (P > 0.10). Pigs fed diets containing SCF and rCS had lower colonic pH and total VFA compared to pigs fed the NC diet (P ≤ 0.05). Pigs fed diets containing pBRT had greater colonic total VFA compared to pigs fed the NC diet (P ≤ 0.07), but no difference in colonic pH was observed (P > 0.10). Pigs fed the NC diet had a greater Ca digestibility compared to pigs fed the PC (P ≤ 0.01), with no treatment to the NC having any effect on Ca digestibility compared to pigs fed the NC (P > 0.10). There was no effect of dietary Ca level on BMD and no overall addition of feeding SCF, rCS, or pBRT on BMD compared to pigs fed the NC (P > 0.10). There was no impact on pig ADG, ADFI, or GF by reducing dietary Ca by 40% (i.e., pigs fed the NC) compared to pigs fed the PC (P > 0.10). Relative to pigs fed the NC, there was no overall effect of SCF, rCS, or pBRT on ADG, ADFI, or GF (P > 0.10). In conclusion, feeding young pigs a Ca-deficient diet reduced colonic pH, increased digestibility of Ca, but had no impact on bone mineralization or overall pig performance. Supplementation of nondigestible oligosaccharides pr protected butyrate had either no effect or an inconsistent effect on colonic pH, Ca, or PHOS digestibility, bone mineralization, or overall pig performance.


Calcium (Ca) is a major component of the skeleton in addition to being essential for growth and is imperative for bone mass development. Improvement in Ca absorption in Ca-deficient diets has been shown in human and rodent studies when nondigestible oligosaccharides have been consumed due to a modification of gastrointestinal conditions which increase mineral solubility. Because swine have been shown to be an excellent model for human nutrition research, an experiment was conducted to determine how a moderately Ca-deficient diet would affect gastrointestinal fermentation conditions, Ca and phosphorus (PHOS) digestibility, bone mineralization, and growth performance in nursery pigs; and if supplementation of nondigestible oligosaccharides would affect these same parameters. Results indicate that feeding young pigs a diet below recommended levels of Ca reduced colonic pH, increased apparent total-tract digestibility of Ca and PHOS, but had no impact on bone mineralization or overall pig performance. Supplementation of nondigestible oligosaccharides had inconsistent effects on colonic pH, and did not affect Ca or PHOS digestibility, bone mineralization, or overall pig performance.


Asunto(s)
Calcio , Fósforo , Porcinos , Animales , Calcio/farmacología , Zea mays , Almidón Resistente/farmacología , Butiratos/farmacología , Digestión , Calcio de la Dieta/farmacología , Dieta/veterinaria , Ácidos Grasos Volátiles/farmacología , Alimentación Animal/análisis
17.
J Food Sci ; 88(1): 315-327, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36510380

RESUMEN

A starch-rich portion is produced as a by-product of black Tartary buckwheat processing. The effect of enzymatic combined with autoclaving-cooling cycles (one, two, or three times) on the physicochemical and structural properties of black Tartary buckwheat type 3 resistant starch (BRS) was evaluated. The autoclaving-cooling cycles enhanced solubility and reduced swelling, with the BRS content increasing from 14.12% to 25.18%. The high crystallinity of the BRS reflected a high molecular order. However, increasing the number of autoclaving-cooling cycles did not result in higher BRS content. The highest BRS yield in the autoclaved starch samples was 25.18% after double-autoclaving-cooling cycles. Furthermore, the autoclaving-cooling cycles altered the crystalline structure of black Tartary buckwheat, and the subsequent crystallinity changed from 36.33% to 42.05% to 38.27%. Fourier-transform infrared spectroscopy shows that the number of cycles results in more efficient double-helical packing within the crystalline lamella. Principal component analysis showed that the autoclaving-cooling cycle treatment leads to significant changes in the molecular structure of resistant starch (RS). These results indicated that autoclaving-cooling cycles might be a feasible way for producing RS from black Tartary buckwheat starch with better structural stability to expand their application range.


Asunto(s)
Fagopyrum , Almidón Resistente , Fagopyrum/química , Almidón/química , Transición de Fase
18.
Phytother Res ; 37(3): 935-948, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36379906

RESUMEN

It has recently been reported that black rice (BR) extract has anti-obesity, anti-diabetic, and anti-osteoporosis effects. It has been shown to reduce obese-related kidney dysfunction in animal models. This study aimed to investigate the effect of resistant starch from BR (RS) on renal inflammation, oxidative stress, and apoptosis in obese insulin resistant rats. Male Wistar rats were divided into six groups: normal diet (ND), ND treated with 150 mg of RS (NDRS150), high-fat (HF) diet, HF treated with 100 and 150 mg of RS (HFRS100), (HFRS150), and HF treated with metformin as a positive control. Insulin resistance was shown in the HF rats by glucose intolerance, increased insulin, total area under the curve of glucose and homeostasis model assessment of insulin resistance and dyslipidemia. The resulting metabolic disturbance in the HF rats caused renal inflammation, fibrosis and apoptosis progressing to kidney injury and dysfunction. Prebiotic RS including anthocyanin from BR at doses of 100 and 150 mg ameliorated insulin resistance, dyslipidemia and liver injury. Treatment with RS reduced TGF-ß fibrotic and apoptotic pathways by inhibition of NF-κB and inflammatory cytokines which potentially restore kidney damage and dysfunction. In conclusion, prebiotic RS from BR ameliorated obesity induced renal injury and dysfunction by attenuating inflammatory, fibrotic, and apoptotic pathways in insulin resistant rats induced by HF.


Asunto(s)
Resistencia a la Insulina , Oryza , Ratas , Masculino , Animales , Insulina/metabolismo , Ratas Wistar , Almidón Resistente/uso terapéutico , Obesidad/tratamiento farmacológico , Dieta Alta en Grasa , Inflamación/tratamiento farmacológico , Fibrosis
19.
Food Chem ; 405(Pt A): 134835, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36356361

RESUMEN

Ricebean accessions (n = 38) cultivated in India were evaluated for their comprehensive nutrient, anti-nutrients and mineral composition. Protein and total dietary fibre ranged between 23.23 and 27.33 and 12.27 to 16.69 g/100 g, respectively. Among the oligosaccharides, verbascose was not detected, however, raffinose and stachyose ranged between 47 and 186 and 117 to 5765 mg/100 g, respectively. Among the free sugars, sucrose was found dominating (up to 370 mg/100 g). Resistant starch (4.13 to 8.62 %), iron (3.49 to 7.46 mg/100 g), zinc (1.90 to 3.72 mg/100 g) and selenium (0.28 to 4.48 µg/100 g) varied significantly (p < 0.05) among ricebean samples. Phytic acid, saponin, trypsin inhibitor and oxalate analysed in ricebean accessions ranged between 303 and 760 mg/100 g, 19 to 46 mg/g, 309 to 1076 mg/100 g and 219 to 431 mg/100 g, respectively. Multivariate analysis using hierarchical clustering analysis (HCA), and principal component analysis (PCA) was employed to decipher the diversity of nutrients and anti-nutrients across the ricebean accessions. Based on HCA, dendrogram-1 (nutrients) and dendrogram-2 (minerals, anti-nutrients) were produced, having four clusters in each. In the dendrogram-1 and 2, the largest cluster had (n = 21) and (n = 15) accessions, respectively. The PCA analyse the uncorrelated set of variables (principal components) and it condenses a large set of data variables. Based on the eigenvalue >1, a total of eight PCs were formed contributing total variance of 78.8 %. The factor loading contribution in the PC1 and PC2 were from iron, fructose, glucose, raffinose and total dietary fibre, selenium (Se) and protein, respectively.


Asunto(s)
Selenio , Vigna , Almidón Resistente , Rafinosa/análisis , Minerales/análisis , Fibras de la Dieta/análisis , Hierro
20.
Int J Biol Macromol ; 225: 13-26, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36481330

RESUMEN

In tropical and subtropical areas, tuber and root crops are staple foods and a key source of energy. Sweet potato (SP) is currently regarded as one of the world's top ten foods because of its diverse sizes, shapes, color, and health benefits. The resistant starch (RS) content of SP is substantial. It is predicted to become the cheapest item in the food industry due to its extensive variety, food stability, emulsifier and fat substitution capabilities, and as filler. As a result, interest in SP-sourced RS has recently increased. Due to their unique nutritional and functional qualities, novelty has become a popular research focus in recent years. This review will summarize the current understanding of SP starch components and their impact on the technological and physicochemical properties of produced starch for commercial viability. The importance of sweet potato RS in addressing future RS demand sustainability is emphasized. SPs are a viable alternative to tubers as a sustainable raw material for RS production. It has an advantage over tubers because of its intrinsic nutritional value and climatic endurance. Thermal, chemical, and enzymatic treatments are effective RS manufacturing procedures. The adaptability of sweet potato RS allows for a wide range of food applications.


Asunto(s)
Ipomoea batatas , Solanum tuberosum , Almidón Resistente/análisis , Ipomoea batatas/química , Almidón/química , Tubérculos de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA